
5 V Low-Drop Voltage Regulator

ILE 4266-2

Features

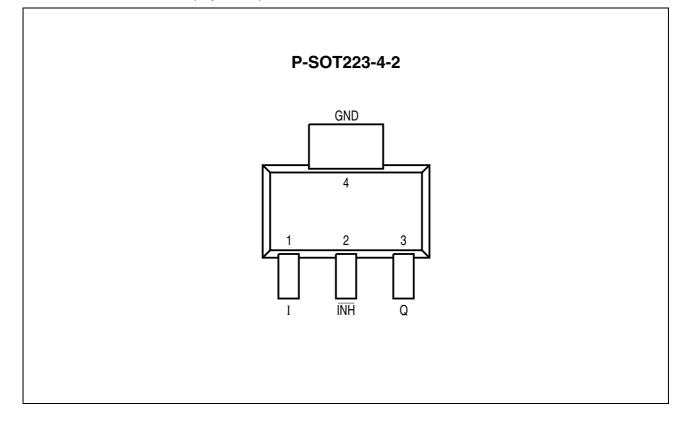
- Output voltage tolerance $\leq \pm 3 \%$
- 150 mA current capability
- Very low current consumption
- Low-drop voltage
- Overtemperature protection
- Reverse polarity proof
- Wide temperature range
- Suitable for use in automotive electronics
- Inhibit

Type Package ILE 4266-2 G P-SOT223-4-2

Functional Description

The ILE 4266-2 is a monolithic integrated low-drop fixed voltage regulator which can supply loads up to 150 mA. It can be switched on and off by the INH pin. It is functional compatible to the ILE 4266, but with a reduced quiescent current of < 1 μ A in OFF mode and 35 μ A in ON mode. The ILE 4266-2 is especially designed for all applications that require very low quiescent current in ON and OFF mode. The device is available in the small surface mounted P-SOT223-4-2 package. In the P-SOT223-4-2

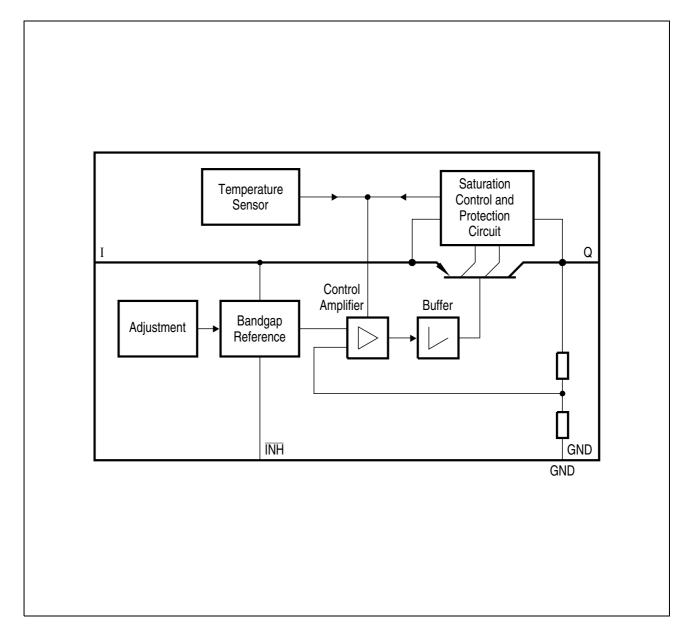
housing it is pin compatible to the ILE 4266G. It is designed to supply


microprocessor systems under the severe condition of automotive applications and therefore it is equipped with additional protection against over load, short circuit and overtemperature. Of course the ILE 4266-2 can be used in other applications, where a stabilized voltage and the inhibit feature is required.

And input voltage V_1 in the range of 6 V < V_1 < 45 V is regulated to V_q = 5 V with an accuracy of ± 3%.

The device operates in the temperature range of $T_j = -40$ to 125 °C. A High level at the INH pin switches the regulator on.

Pin Configuration (top view)



Pin Definitions and Functions

Pin	Symbol	Function
1	I	Input voltage; block to ground directly at the IC with a ceramic capacitor.
2	ĪNH	Inhibit input; high level turns IC on.
3	Q	Output voltage; block to ground with a capacitor.
4	GND	Ground

Block Diagram

Absolute Maximum Ratings

 $T_{\rm i} = -40$ to 125 °C

Parameter	Sym bol	Limit	Values	Unit	Notes	
		min.	max.			
Input I						
Voltage	V_{I}	- 42	45	V	_	
Current	I	_	-	-	internally limited	
Inhibit INH	·		·	·	·	
Voltage	$V_{\overline{INH}}$	- 42	45	V	-	
Output Q			-			
Voltage	V _Q	- 1	32	V	-	
Current	IQ	-	-	-	internally limited	
Output Voltage Sense	S					
Voltage	Vs	- 1	32	V	-	
Current	Is	-	-	-	internally limited	
GND						
Current	$I_{ m GND}$	50	-	mA	-	
Temperature						
Junction temperature	Tj	_	150	°C	-	
Storage temperature	Ts	- 50	150	°C	-	
Operating Range			·	<u>.</u>		
Input voltage	Vi	5.5	45	V	-	
Junction temperature	Tj	- 40	150	°C	-	

Absolute Maximum Ratings

 $T_{\rm i} = -40$ to 150 °C

Parameter	Symbol	Limit	Values	Unit	Notes	
		min. max.				
Thermal Resistance)	·	·	·	•	
Junction ambient	$R_{ thist{thj-a}}$	-	85	K/W	P-SOT223-4-2 ¹⁾	
Junction ambient	$R_{ m thj-a}$	_	115	K/W	P-TSOP-8-1 ¹⁾	
Junction case	$R_{ m thj-pin4}$	-	20	K/W	P-SOT223-4-2	
Junction case	$R_{ m thj-pin5-8}$	-	29	K/W	P-TSOP-8-1	
Operating Range	·				I	
				Ι		

Input voltage	V_{i}	5.5	45	V	-
Junction temperature	$T_{ m j}$	- 40	150	°C	_

 $^{1)}$ Worst case, regarding peak temperature; zero airflow; mounted an a PCB 80 \times 80 \times 1.5 mm³, heat sink area 300 mm².

Characteristics

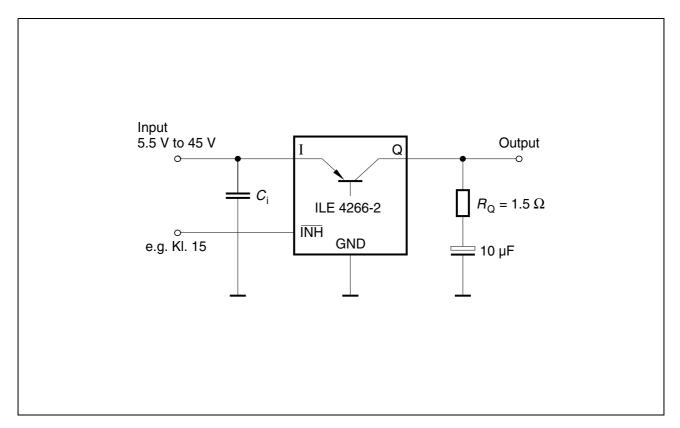
 $V_{\rm I}$ = 13.5 V; - 40 °C $\leq T_{\rm j} \leq$ 125 °C

Parameter	Symbol	Lir	nit Va	lues	Unit	Test Condition
		min.	typ.	max.		
Output voltage	V _Q	4.9	5	5.1	V	$5 \text{ mA} \le I_{\text{q}} \le 100 \text{ mA}$ $6 \text{ V} \le V_{\text{i}} \le 28 \text{ V}$
Output-current limitation	IQ	150	200	500	mA	-
Current consumption $I_q = I_i - I_Q$	I _q	-	0	1	μA	$V_{\text{INH}} = 0 \text{ V}; T_{\text{j}} \leq 100 ^{\circ}\text{C}$
Current consumption $I_q = I_i - I_Q$	I _q	-	35	-	μA	$I_{Q} = 1 \text{ mA}$ Inhibit ON
Current consumption $I_q = I_i - I_Q$	Iq	-	2	8	mA	$I_{q} = 50 \text{ mA}$ Inhibit ON
Drop voltage	$V_{ m Dr}$	-	0.25	0.5	V	$I_{\rm Q} = 100 \ {\rm mA}^{1)}$
Load regulation	ΔV_{Q}	-	10	30	mV	$I_{\rm Q}$ = 1 to 100 mA $V_{\rm i}$ = 6 V
Line regulation	ΔV_{Q}	-	10	40	mV	$V_{I} = 6 \text{ V to } 28 \text{ V}$ $I_{Q} = 1 \text{ mA}$
Supply-voltage rejection	SVR	-	68	-	dB	$f_{\rm r}$ = 100 Hz, $V_{\rm r}$ = 0.5 $V_{\rm PP}$
Output Capacitor	C _Q	10	_	_	μF	Low ESR tantalum or ceramic capacitor recommended
Output Series Resistance	$R_{Q} + ESR$	1.5	-	5.5	Ω	C _Q = 10 μF
	$R_{Q} + ESR$	1.0	-	5.5	Ω	C _q = 22 μF

Characteristics

 $V_{\rm I}$ = 13.5 V; - 40 °C $\leq T_{\rm j} \leq$ 125 °C

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		


Inhibit

Inhibit on voltage	$V_{\overline{ ext{INH}}, ext{ on}}$	_	_	3.5	V	-
Inhibit off voltage	$V_{\overline{ ext{INH}}, ext{ off}}$	0.8	_	_	V	-
Inhibit current		_	4	8	μA	$V_{\text{INH}} = 5 \text{ V}$

¹⁾ Drop voltage = $V_i - V_q$ (measured when the output voltage V_q has dropped 100 mV from the nominal value obtained at V_i = 13.5 V).

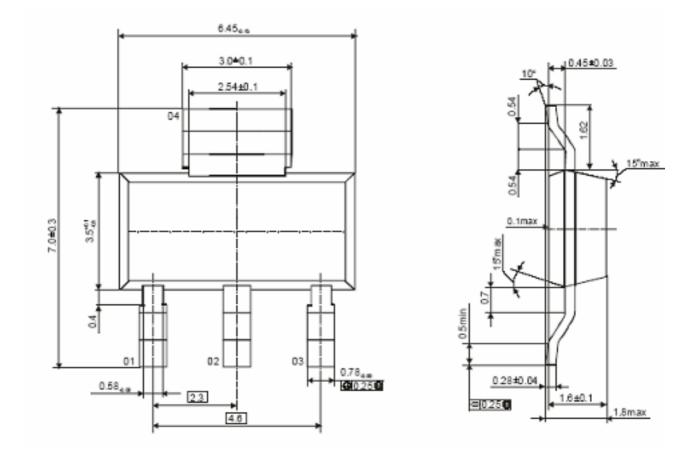
Measuring Circuit

Circuit Description and Application Information

In the ILE 4266-2 the output voltage is divided and compared to an internal reference of 2.5 V typical. The regulation loop controls the output to achieve an output voltage of 5 V with an accuracy of \pm 2% at an input voltage range of 5.5 V < V_1 < 45 V.

For stability of the control loop the ILE 4266-2 output requires an output capacitor C_{α} of at least 10 μ F and an additional output resistor R_{α} . The resistor should be 1.5 Ω when a 10 μ F capacitor is used and 1.0 Ω for $C_{\alpha} \ge 22\mu$ F. The sum of R_{α} and the ESR of the capacitor must be kept below 5.5 Ω . In order to achieve this the use of low-ESR tantalum or ceramic capacitors is recommended.

The ILE 4266-2 can supply up to 150 mA. However for protection reasons at high input voltage above 25 V, the maximum output current is reduced (SOA protection).


At the input of the regulator an input capacitor is necessary for compensating line influences. A resistor of approx. 1 Ω in series with C_1 , can damp any oscillation occuring due the input inductivity and the input capacitor.

The ILE 4266-2 includes the Inhibit function. For a voltage above 3.5 V at the $\overline{\text{INH}}$ pin the regulator is switched on.

Package Dimension

P-SOT223-4-2

