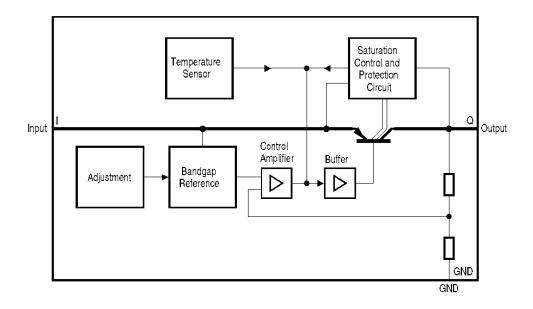
5-V/100mA Low Power Low-Drop Fixed-Voltage Regulator with low current consumption

ILE4264-2G

The ILE 4264-2G is a Monolithic Integrated Low Power Low-Drop Fixed Voltage Regulator 5-V/100mA with low current consumption. The ILE 4264-2G is specially designed to create power source with 5V output voltage, loads up to 100 mA and drop voltage less than 0.5V. The regulator is designed to supply electronic device in automotive applications and some another applications. The ILE 4264-2G is equipped with additional protection against overvoltage of both polarities, load current limitation, short-circuit and over temperature shutdown of output voltage.


ORDERING INFORMATION

Device	Operating Temperature Range	Package	Packing
ILE4264-2G	T _J = -40° to 125° C	SOT-223	T&R

Features

- Output voltage tolerance 5V ±3% (±2% up to 50 mA)
- Low-drop voltage
- Current capability up to150 mA
- Very low current consumption
- Over temperature protection
- Reverse polarity proof
- Suitable for use in automotive electronics
- Short-circuit proof
- AEC-Q100 Qualified
- ESD Protection: HBM ±8.000V / MM ±400V / CDM ±2.000V

Block Diagram

Pin Description (for SOT-223 package)

Pin	Symbol	Function			
01	1	Input voltage; block to ground directly with a ceramic capacitor			
03	Q	5-V output voltage; block to ground with a capacitor (C _Q ≥10 μF, ESR≤4Ω)			
02, 04	GND	Ground			

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Note
Input voltage	V _I	-42	45	V	
Input current	I _I				limited internally
Ground pin current	I _{GND}	50	-	mA	
Output voltage	VQ	-0.3	32	V	
Output current	IQ				limited internally
Junction temperature	TJ	-40	150	°C	
Storage temperature	T _{stg}	-50	150	°C	

^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Operating Range

Parameter	Symbol	Min	Max	Unit
Input voltage	Vı	6	28	V
Junction temperature	T_J	-40	125	လ

Thermal Resistances

Parameter	Symbol	Min	Max	Unit
Thermal Resistances Junction-case , for conventional case P-SOT223-4-1	R _{th jc}	-	25*	°C/W
Thermal Resistances Junction-ambient, for conventional case P-SOT223-4-1, - without heat sink	R_{thja}	-	220*	°C/W

^{*} R_{th ja} - Thermal Resistances Junction-ambient

Thermal resistance junction ambient for IC with heat dissipater is calculated by formula:

$$R_{th ja} = R_{th jc} + R_{th ca} \tag{1}$$

Rth jc - thermal resistance junction case, °C /W.

Application circuit and heat dissipater have to provide $T_J \le 125$ °C.

Maximum power Ptot, B_T, dissipated by IC for T_A, is calculated by formula:

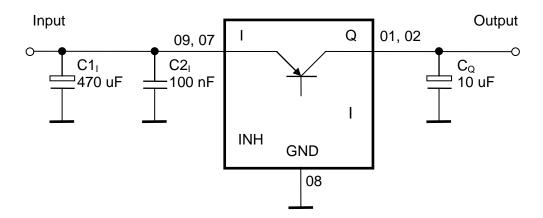
$$P_{tot} = (125 - T_A) / R_{th ja}$$
 (2)

125 – maximum permitable operating junction temperature, ^oC

Electrical Characteristics

(V_I=13.5 V, -40 $^{o}C \leq T_{J} \leq$ 125 $^{o}C,$ unless specified otherwise)

_	Symbol	Test Conditions	Limit Value				
Parameter			Min	Тур	Max	Unit	Note
Output voltage	.,	$9 \text{ V} \le \text{V}_{\text{I}} \le 16 \text{ V}$ $5 \text{ mA} \le \text{I}_{\text{Q}} \le 50 \text{ mA}$	4.9	5.0	5.1	V	
	V _Q	$6 \text{ V} \le \text{V}_{\text{I}} \le 21 \text{ V} $ 5 mA $\le \text{I}_{\text{Q}} \le 100 \text{ mA}$	4.85	5.0	5.15		
Maximum output current	I _{Qmax}	$4.8~V \leq V_Q \leq 5.2~V$	150		500	mA	
	Iq	$I_Q=0.1 \text{ mA}, (T_J \le 85^{\circ}\text{C})$	-		0.06	mA	
Consumption current $I_q = I_1 - I_Q$		$I_{Q} = 0.1 \text{ mA}$	-		0.07		
$I_q = I_1 - I_Q$		$I_Q = 50 \text{ mA}$	-		4		
Drop-out voltage	V_{Dr}	I _Q = 100 mA	-	0.25	0.5	V	1
Load regulation	$\Delta V_{Q(I)}$	$1 \text{ mA} \le I_Q \le 100 \text{ mA}$ $VI = 13.5 \text{ V}$	-		90	mV	
Line regulation	$\Delta V_{Q(V)}$	$\begin{array}{l} 6 \text{ V} \leq \text{VI} \leq 28\text{V} \\ I_Q = 1 \text{ mA} \end{array}$	-		30	mV	


Typical Performance Parameters (V_I=13.5 V, -40 $^{\circ}C$ \leq T_J \leq 125 $^{\circ}C$, unless specified otherwise)

Parameter	Symbol	Test Condition	Typical Value	Unit
Power Supply Ripple Rejection	PSRR	$f_r = 100 \text{ Hz},$ $V_r = 3 \text{ V (peek-to-peek)}$	68	dB

¹ Drop voltage $V_{Dr} = V_1 - V_Q$ (measured when the output voltage V_Q has dropped 100 mV from the nominal value obtained at $V_1 = 13.5$ V).

Application Circuit

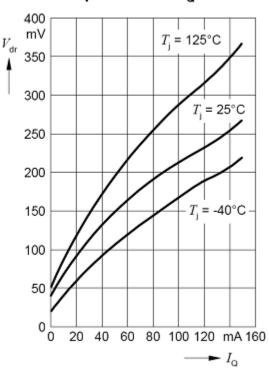
In the ILE4264-2G the output voltage is divided and compared to an internal reference of 2.5 V typical. The regulation loop controls the output to achieve an output voltage of 5V with an accuracy of $\pm 3\%$ at an input voltage range of 5.5 V < $V_{\rm I}$ < 45 V.

Figure shows a typical application circuit. For stability of the control loop the ILE4264-2G output requires an output capacitor $C_{\rm Q}$ of at least 10 μF with a maximum permissible ESR of 4Ω . Tantalum as well as multi layer ceramic capacitors are suitable.

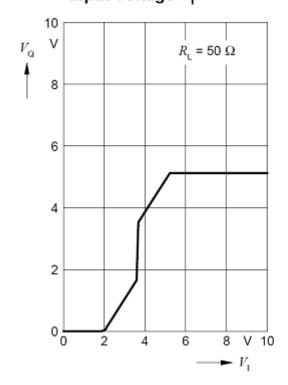
At the input of the regulator an input capacitor is necessary for compensating line influences (100nF ceramic capacitor recommended). A resistor of approx. 1Ω in series with C_i , can damp any oscillation occurring due the input inductivity and the input capacitor.

In the application circuit shown in Figure an additional electrolytic input capacitor of 470 μ F is added in order to buffer supply line influences. This capacitor is recommended, if the device is sourced via long supply lines of several meters.

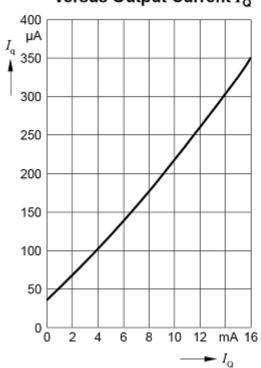
The ILE4264-2G can supply up to 150 mA. However for protection for high input voltage above 25 V, the output current is reduced (SOA protection).



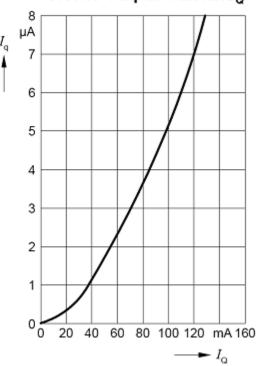
Typical Performance Characteristics


Output Voltage $V_{\rm Q}$ versus Temperature $T_{\rm i}$

Drop Voltage V_{dr} versus Output Current I_{O}

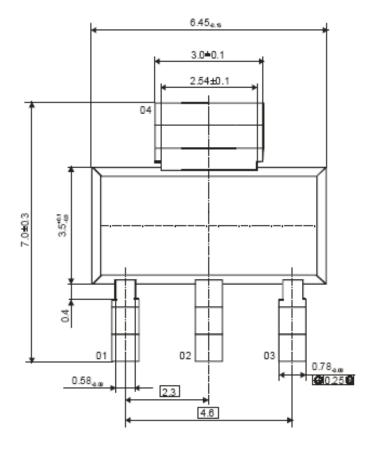


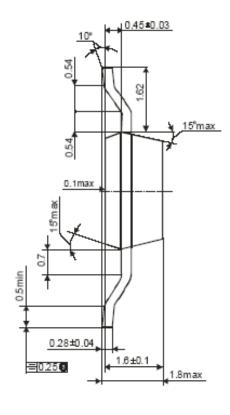
Output Voltage V_{Q} versus Input Voltage V_{I}



Typical Performance Characteristics (continue)

Current Consumption $I_{\rm q}$ versus Output Current $I_{\rm Q}$




Current Consumption $I_{\mathbf{q}}$ versus Output Current $I_{\mathbf{Q}}$

Package Dimensions

SOT-223

